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Supplementary Figure 1 

 

 

 
 

 

Supplementary Figure 1. Morphology, size and number of MHV-induced DMVs are not 

affected by 2'-O-MTase-deficiency. DMVs were analysed by electron microscopy of ultrathin 

sections of MHV-A59-, MHV-Y15A-, or MHV-D130A-infected (MOI=1) mouse L929 cells at 5 h 

p.i.. Virus-induced features including convoluted membranes (c), DMVs (*) and virions (v), as well as 

cellular features including the nucleus (n), Golgi (g), mitochondria (m) and ordered smooth 

endoplasmic reticulum (o) are indicated. Quantitative data describing DMV and virions visible in 

these micrographs are shown at lower right. The average of the longest and shortest visible diameter 

was taken as a measure of size. The ratio of the longest to the shortest diameter was taken as a 

measure of shape. The number of DMVs per cell includes only DMV-containing cells.  Scale bar 

denotes 200 nm. 
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Supplementary Figure 2 

 

 

Supplementary Figure 2. MHV 2'-O-MTase mutants induce increased IFN-I secretion. a,b) 

Kinetics of IFN-I secretion induced by MHV 2'-O-MTase mutants was analyzed by bioassay for IFN-

I. Ms (110
6
) derived from wild-type (a), or IFNAR-deficient (b) mice were infected (MOI=1) with 

MHV-A59, MHV-Y15A, or MHV-D130A and IFN- in cell culture supernatants was determined at 

indicated time points p.i.. Results represent the mean ±SEM of two independent experiments (n=4). 

Statistical analysis was performed using unpaired Student's t-test (**, p < 0.01).  
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Supplementary Table 1. Methylation of viral RNA in selected cytoplasmically-

replicating virus families infecting multicellular eukaryotes.  

 

aIncluding genomic RNA structure data for positive-sense single-stranded RNA viruses only. 
bCoronavirus nsp14 is an N7MT. 
cIndicates detection of one domain with 2OMT homology. 
dIt is unclear whether roniviruses also encode a homolog of the coronavirus nsp14 N7MT 48. 
eNot detected. 
f2OMT and N7MT homologs not detected. 
gOne domain has N7MT homology 65,85. 
hHepatitis E virus p110 has N7MT activity 86. 
iViral RNAs interact with 7mG-cap binding antisera. 
jA homologous domain is present, but active site residues are not conserved. 

Virus class or 

Order 

Family Genus RrmJ-like 

Domain 

Function Reference mRNA 5' 

Structurea 

Reference Notes 

 

ssRNA(+) Viruses 

 

Nidovirales Coronaviridae All nsp16 2OMT 47 7mGpppA2'Om 

or 7mGpppG2'Om 

48,49 b 

Nidovirales Roniviridae Okavirus MHV nsp16 

homolog 

MThc 50 not determined  d 

Nidovirales Arteriviridae Arterivirus   nde   7mGpppA2'Om 

or 7mGpppG2'Om 

51 f 

Picornavirales All All nd   VPg and IRES 52  

Tymovirales All All nd   7mGpppG 53 g 
- Astroviridae All nd   not determined  f 

- Barnaviridae Barnavirus nd   VPg 54  

- Bromoviridae All nd   7mGpppG 55 g 
- Caliciviridae All nd   VPg 56  

- Closteroviridae All nd   not determined  g 

- Flaviviridae Flavivirus NS5 N7/2OMT  57 7mGpppA2'Om 58  
- Flaviviridae Pestivirus nd   IRES 59  

- Flaviviridae Hepacivirus nd   IRES 60  

- Hepeviridae Hepevirus nd   7mGppp 61 h,i 

- Luteoviridae All nd   Uncapped 62  

- Nodaviridae All nd   7mGpppG 63  

- Potyviridae All nd   VPg and IRES 64  

- Tetraviridae All nd   not determined  g 
- Togaviridae All nsp2 MThj 65 7mGpppA 66 k 

- Tombusviridae All nd   7mGpppA 67  

- Virgaviridae All nd   7mGpppG 68 g 
 

         

ssRNA(-) Virusesl 

 

Mononegavirales Rhabdoviridae All L N7/2OMT  69 7mGpppA2'Om or 
7mGpppN 

70  

Mononegavirales Filoviridae All L MThc 71 7mGppp 72 i 

Mononegavirales Paramyxoviridae All L MThc 73 7mGpppG 74  

- Arenaviridae  Arenavirus nd   Methylated cap 75 m 

- Bunyaviridae All nd   7mGppp 76 i,m 
 

 

dsRNA Virusesn 

 

- Birnaviridae All nd   VPg 77  
- Reoviridae All 2/Cap MThc 78 7mGpppN2'Om 79 

 

o 

 

dsDNA Virusesp 

 

- Asfarviridae Asfivirus EP424R MThc 80 7mGpppA2'Om 81  

- Mimiviridae Mimivirus L511 MThc 82 not determined   
- Poxviridae All VV_vp39 

homologs 

2OMT 83 7mGppp6mA2'Om 84 q 

- Phycodnaviridae All nd   not determined  r 
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kOne domain of nsp1 has N7MT homology, and internal RNA methylation has been reported 65,66. 

lOmitting bornavirus and nucleorhabdoviruses, which replicate in the nucleus. 
mThe cap structure of viral mRNA is acquired from host mRNA 87,88. 

nOmitting the poorly characterized genomes of the Endornaviridae, Partitiviridae and Picobirnaviridae. 
oOmitting the poorly characterized genomes of Fijivirus Mimoreovirus and Dinovernavirus. 
pOmitting Iridoviridae which carry out most or all mRNA synthesis in the nucleus. 
qConserved poxvirus VV D1-like proteins have N7MT homology 89.  

rHomologs of chlorella virus A103R have N7MT activity 90 
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